
Example:
format(9.3456,"s3") returns 9.35
Fourier a
n
Returns the nth Fourier coeicient a
n
=2/T*∫(f(x)*cos(2*pi*n*x/T),a,a+T).
Fourier b
n
Returns the nth Fourier coeicient b
n
=2/T*∫(f(x)*sin(2*pi*n*x/T),a,a+T).
Fourier c
n
Returns the nth Fourier coeicient c
n
=1/T*∫(f(x)*exp(-2*i*pi*n*x/T),a,a+T).
fracmod
For a given integer n (representing a fraction) and an integer p (the modulus), returns the fraction a/b such
that n=a/b(mod p).
fracmod(Integern, Integerp)
Example:
fracmod(41,121) gives 2/3
froot
Returns a vector containing the roots and poles of a rational polynomial. Each root or pole is followed by its
multiplicity.
froot(RatPoly)
Example:
froot returns [0 3 1 2 3 -1]
fsolve
Returns the numerical solution of an equation or a system of equations. With the optional third argument,
you can specify a guess for the solution or an interval within which it is expected that the solution will occur.
With the optional fourth argument you can name the iterative algorithm to be used by the solver by
specifying bisection_solver, newton_solver, or newtonj_solver.
fsolve(Expr,Var,[Guess or Interval],[Method])
Example:
fsolve(cos(x)=x,x,-1..1,bisection_solver) gives [0.739085133215]
function_di
Returns the derivative function of a function (as a mapping).
function_diff(Fnc)
Example:
432 Chapter 22 Functions and commands
Kommentare zu diesen Handbüchern